Seven

Submission deadline: October 31^{st} 2018

Find the	number	of pos	sitive	integer	$\mathbf{\dot{s}} x$	that	is less	than
or equal t	to 10,000	such	that 2	$2^x - x^2$	is n	ot div	visible	by 7.

The problem was solved (using some computer software) by

 \bullet Daram Varam, American University of Sharjah, UAE.

Discussion: Clearly

$$x = 7n + m, 0 \le m \le 6.$$

We will analyze the divisibility for each value of m.

Notice that $10,000 = 7 \times 1428 + 4$.

If 7 divides x, then it divides x^2 and hence 7 does not divide $2^x - x^2$.

Thus there are 1428 values when
$$m = 0$$
. (1)

Now we look at $1 \le m \le 6$. It is easy to see that

$$2^{x} - x^{2} = (2^{7n+m} - m^{2}) - 7(7n^{2} + 2nm)$$

Thus, it is easy to see that 7 divides $2^x - x^2$ if and only if 7 divides $2^{7n+m} - m^2$. We further write

$$2^{7n+m} - m^2 = 2^{7n}(2^m - m^2) + m^2(2^{7n} - 1)$$

It is easy to see that 7 divides $2^m - m^2$ when m = 2, 4, 5, 6. And 7 does not divide $2^m - m^2$ when m = 1, 3. Thus, we need to look at the divisibility of $2^{7n} - 1$ by 7. If n is a multiple of 3, then $2^{7n} - 1$ has the factor $2^3 - 1$. When n is not a multiple of 3, it is easy to see that 7 does not divide $2^{7n} - 1$. For each m = 2, 4, 5, 6 there are 476 multiples of 3 under 10,000. Thus

There are
$$4 \times (1428 - 476)$$
 values when m is 2, 4, 5 or 6. (2)

A similar argument shows that

There are
$$2 \times 953$$
 values for $m = 1$ or 2. (3)

Combining the values in (1), (2) and (3) it follows that there are 7142 values.