Larger than One

Submission deadline: August $28^{\mbox{th}}$ 2024

Let a, b, c, d be positive numbers less than one.	How many of the following
numbers can be larger than one?	

$$4a(1-b), 4b(1-c), 4c(1-d), 4d(1-a)$$

The problem was solved by

- \bullet Mümtaz Ulaş Keskin, $\it Erciyes$ University, Faculty of Aeronautics and Astronautics, Turkey.
 - \bullet Ruben Victor Cohen, Argentina.
 - Svarit Joshi, Class 10, Ahmedabad, India.
- \bullet Ionut-Zaharia Chirila, $\ alumnus,\ Lower\ Danube\ University,\ Galati,\ Romania.$

Discussion:

Suppose that each term is larger than one. Then, it follows that

$$4a(1-b) \cdot 4b(1-c) \cdot 4c(1-d) \cdot 4d(1-a) > 1.$$

By rearranging terms we get that

$$4a(1-a) \cdot 4b(1-b) \cdot 4c(1-c) \cdot 4d(1-d) > 1.$$

Consider the function f(x) = 4x(1-x). It is clear that $f(x) \le 1$, for all x. Thus, it is impossible for $4a(1-a) \cdot 4b(1-b) \cdot 4c(1-c) \cdot 4d(1-d)$ to be greater than 1. Therefore, our initial assumption is wrong. Hence all of the given numbers cannot be larger than 1.

given numbers cannot be larger than 1. If $a=\frac{1}{2},b=\frac{3}{8},c=\frac{3}{10},d=\frac{1}{12},$ then 3 of the given numbers are larger than 1.

Thus, at most 3 of the given numbers can be larger than 1.