Less then Average

Submission deadline: July 28^{th} 2024

Let T be a triangle with sides a, b and c. Assume that c is less than the average of the other two sides. Prove that the angle opposite to the side c is less than the average of the other two angles.

The problem was solved by

• Ionut-Zaharia Chirila, alumnus, Lower Danube University, Galati, Romania. Discussion:

Let γ denote the angle opposite to the side c and denote the other two angles by α and β . Then, we have that

$$c^2 = a^2 + b^2 - 2ab\cos(\gamma)$$

Since $(a+b)/2 \ge c$, it follows that

$$\frac{(a+b)^2}{4} \geq a^2 + b^2 - 2ab\cos(\gamma)$$

Further simplification of the inequality above yields,

$$2ab(1 + 4\cos(\gamma)) \ge 3(a^2 + b^2)$$

But $a^2 + b^2 \ge 2ab$, therefore,

$$2ab(1 + 4\cos(\gamma)) \ge 6ab.$$

Thus,

$$\cos(\gamma) \ge \frac{1}{2}$$

Note that $\cos(x)$ decreases when $0^{\circ} < x < 180^{\circ}$, and $\cos(60^{\circ}) = 1/2$, hence

 $\gamma \le 60^{\circ}$

Thus, $\alpha+\beta\geq 120^\circ$ and we obtain the desired result.